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We study numerically the dynamical system of a two-electron atom with the Darwin interaction as a model
to investigate scale-dependent effects of the relativistic action-at-a-distance electrodynamics. This dynamical
system consists of a small perturbation of the Coulomb dynamics for energies in the atomic range. The key
properties of the Coulomb dynamics diga peculiar mixed-type phase space with sparse families of stable
nonionizing orbits andii) scale-invariance symmetry, with all orbits defined by an arbitrary scale parameter.
The combination of this peculiar chaotic dynamjéis and (ii)], with the scale-dependent relativistic correc-
tions (Darwin interactio, generates the phenomenon of scale-dependent stability: We find numerical evidence
that stable nonionizing orbits can exist only for a discrete set of resonant energies. The Fourier transform of
these nonionizing orbits is a set of sharp frequencies. The energies and sharp frequencies of the nonionizing
orbits we study are in the quantum atomic range.

PACS numbd(s): 05.45.Pq, 31.15.Ct, 45.05x

[. INTRODUCTION the quantum atomic energies. Using these preliminary find-
ings as a guide, we present a numerical investigation of the
The Coulomb dynamical system of the helium atom is astability of nonionizing orbits for the Darwin dynamics and
very peculiar chaotic system that exhibits Arnold diffusionits dependence on the energy scale. It turns out that for en-
[1], and with a typical trajectory having an infinity of pos- ergies of atomic interest, the Darwin equations of motion
sible time-asymptotic final states. For example, almost alhpproximate the Coulomb equations plus a perturbation of
negative-energy trajectories of Coulombian helium displaysize 82, with 8~10~2. Therefore, nonionizing stable orbits
the generic phenomenon of ionization, namely, the ejectiomf the Darwin dynamics should exist in the neighborhood of
of one electron2,3]. Several nonlinear dynamical systems nonionizing stable Coulombian orbits if the perturbation
share this property of having more than one time-asymptoticloes not force ionization. For these, our numerical results
final state, with the respective basins for each outcome hawith Darwin dynamics indicate that the nonionizing property
ing a complicated structure in initial condition spdees]. plus stability requires sharply defined discrete energies.
The numerical work in this paper is based on stable Coulom- This paper is organized as follows: In Sec. Il we discuss
bian orbits of a two-electron atom that do not ionize forhow the Darwin Hamiltonian can be an approximation to a
several millions of turns of one electron around the nucleustime-reversible direct-interaction relativistic physical theory.
It is a property of the Coulomb dynamics of a two-electronin Sec. Il we describe the numerical calculations with the
atom that most initial conditions with a negative energy ion-Coulomb limit of the Darwin interaction, and find some non-
ize very quickly in about 20 turng2,3]. Then there are the ionizing orbits and their Fourier transforms. In Sec. IV we
very special initial conditions that do not ionize due to ainclude the scale-dependent Darwin terms and investigate the
precise phase balance between the two electrons. These raressibility of stable nonionizing orbits. In Sec. V we give the
nonionizing orbits are defined very sharply in phase spaceonclusions and discussion.
and were first studied in Ref2] and[3] for plane orbits.
Here we also develop a numerical procedure to search for
nonionizing orbits among a large number of possible tridi- Il. DIRECT-INTERACTION ELECTRODYNAMICS

mensional initial conditions. o o ) )
The Coulomb Hamiltonian exhibits the scale-invariance The Darwin interaction is not exaCtly a Lorentz invariant
interaction[9—11], so we study it as an approximation to the

equations of motion are left invariant iT2/L3=1 (this relativistic action-at-a-distance electrodynamics,'for the sgke
simple scale relation is Kepler's third law of gravitatiofor ~ Of including the present approach into an underlying physical
this reason, the behavior of the Coulomb dynamics is théh€ory. Maxwell's theory would seem to be the natural can-
same in all scales, a degeneracy which is broken by the relglidate for the comprehensive physical theory, but it lacks
tivistic effects of electrodynamics. The phenomenon oftime reversibility and dipolar dissipation would forbid the
breaking the scale invariance in electrodynamics was exorbits studied in this paper. In the face of this, an alternative
plored analytically in6,7] for the Darwin interaction, which physical theory would be a direct-interaction theory. This
is the low-velocity approximation to the Wheeler-Feynmantheory could be the Wheeler-Feynman action-at-a-distance
action-at-a-distance electrodynamif8]. It was found in  electrodynamics, for exampld 2], and in fact the Darwin
[6,7] that a simple resonant normal form approximationinteraction is the low-velocity approximation to the Wheeler-
theory predicts a discrete set of quantized scales very close Eeynman electrodynami¢8].

degeneracy: if we scale time and spacé¢-ad't, r—Lr, the
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Wheeler and Feynman showed that electromagnetic phehe scaled frequency and scaled angular momentunwe

nomena can be described by the action-at-a-distance electrgan recover the actual values in cgs units by the formulas
dynamics in complete agreement with Maxwell’s electrody-

namics as far as the classical experimental consequences )
[12,13. This direct-interaction formulation of electrodynam- mc2{(Z2) B3 . e’lc |
ics was developed to avoid the complications of a divergent w= w, I= () B
self-interaction, as there is no self-interaction in the theory,
and also to eliminate the infinite number of field degrees of
freedom of Maxwell's theory{14] (and there is no loose The only other analytic constant of the Coulomb dynamics,
radiation in the theory eithgrlt was a great inspiration of besides the energfl), is the total angular momentum, and
Wheeler and Feynman in 19482] that showed, with the this dynamics is chaotic and displays Arnold diffusion, as
extra hypothesis that the electron interacts with a completelproved in[1] for a similar three-body system.
absorbing universe, that the advanced response of this uni- Our numerical calculations were performed using a ninth-
verse to the electron’s retarded field arrivegsthe present order Runge-Kutta embedded integrator par]. We chose
time of the electrorand is equivalent to the local instanta- the embedded error per step to be 1) and after 16 1¢°
neous self-interaction of the Lorentz-Dirac thegiy]. The  time units of integration the changes in energy and total an-
action-at-a-distance electrodynamics is symmetric undegular momentum were less than 1 part irff.18s a numeri-
time reversal, and dissipation is only due to interaction withcal precaution we performed the numerical calculations us-
the other charges of the universe and becomes a matter pfg the double Kustanheimo coordinate transformation to
statistical mechanics of absorpti¢t6] (the Lorentz-Dirac regularize single collisions with the nucle[®3]. As these
dissipation being just a special limiting way of interaction alone are not enough for faithful integration, we checked that
with the other charges of the univeris?]). In this paper we there was never a triple collision, as the minimum interelec-
are only interested in the nondissipative isolated two-electrofronic distance was about 0.3 units while the minimum dis-
system. tance to the nucleus was 0.01 units for all the orbits consid-
In the following we resort to the Darwin approximation ered in this work. We also checked that along stable
not as much as a mathematical approximation to the actiomonionizing orbits we can integrate forward up to 50000
at-a-distance electrodynamics, but as a physical approximaime units, reverse the integration, go backwards another
tion of Lorentz-invariant direct-interaction dynamics in the 50 000 units, and recover the initial condition with a percen-
atomic shallow-energy range. There are today severalle error of 10 °. (Notice that the embedded integrator will
choices of direct-interaction Lorentz-invariant systems, einot repeat the same exact forward steps in the backwards
ther Lagrangiarj17] or constrained Hamiltonian dynamical integration) For longer times this precision of back and forth
systemg 18—21], whose exact forms are actually more ame-integration degenerates rapidly, which is due to the com-
nable to numerical treatment than the Wheeler-Feynmahined effect of numerical truncation and stochasticity. The
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electrodynamics, but we shall not discuss them here. question of how far in time the numerical trajectories ap-
proximate shadowing trajectories in the present system is far
IIl. NUMERICAL CALCULATIONS FOR THE COULOMB from trivial [24], but we assume it to be a time at least of the
DYNAMICS order of these 100 000 unité€Energy conservation of 1 part
in 10° is achieved for much longer times, evex 1% time

To introduce our numerical calculations, we start from theunits)

scale-invariant Coulomb limit of the Darwin interaction: .Let The study of orbits of a two-electron atom was greatly
—e andm be the electronic charge and mass, respectivelygtimjated by the recent interest in semiclassical quantiza-
and Ze the nuclear charge of our two-electron atom. Thegon ang these studies discovered two types of stable zero-
nucleus is assumed infinitely massive and resting at the Orl5hgular-momentum periodic orbits for heliurd£2): the

gin. Our numerical work uses a scaling that exploits th.e Scalfangmuir orbit and the frozen-planet orj@5,26. A de-
invariance of the Coulomb dynamics: Given a negative ent,jjeq study of the nonionizing orbits of Coulombian helium
ergy, there is a unique circular orbit at th2at energy with fre-Was initiated in Refs[2] and[3] for plane orbits, and we
quencyw, and radiusk related bye2/(mwo_R3) =1(Z=%)  describe some of their results below. There are basically two
={(2). We scale distance, momentum, time, and energy agpes of nonionizing orbits: symmetriciif=r, for all times
X—RX, p—mw,Rp, w,dt—dr, andE—>mw(2JR2H, respec- and asymmetric if ;#r, generically. Symmetric orbits are
tively. In these scaled units, the Coulomb dynamics of thegroduced by symmetric initial conditions like, for example,
two-electron atom is described by the scaled Hamiltonian x,(0)=—x,(0) and p;(0)=—p,(0) or X;(0)=—x,(0)

1 1 7 and 51(0)=52(_0) with )Zl(o_)-ﬁl(O)=0 [25]. Because Eq.
A= _(|§1|2+ | 52|2)+ g(Z)[— - _J , (1) (1) is symmetric under particle exchange, these orbits satisfy
2 fiz M1 T2 r,=r, at all times, and therefore cannot ionizéHit<0 (both
- - - - ) electrons would have to ionize at the same time, which is

wherer;=|x|, r,=|%;|, r1,=|x;—X;| (single bars repre- jmpossible at negative energiesor example the double-
sent Euclidean modullisand 3= w,R/c. For a generic non-  gjjiptical orbits (two equal ellipses symmetrically displaced
circular orbit, 8 plays the role of a scale parameter, and weg|ong thex axis) discussed iri7] are in this class. Double-
recover the value of the energy in ergs through elliptical orbits are known to be unstab|6,7] and we find
=m<:2,82I:|. Notice thatB does not appear in the scaled that they ionize in about 100 turns because of the numerical
Hamiltonian, which is the scale-invariance property. Fromtruncation error. Most symmetric plane orbits are very un-
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FIG. 1. Nonionizing double-ring orbit for a C&® ion (Z FIG. 2. Nonionizing double-ring tridimensional orbit for helium

=20), obtained from the initial conditionX;=(r;,0,0), p; (Z=2). Trajectories are shown for the first 200 time units, the inner

=(0v14/7,0), X,=(—1.0,0,0), p,=(0,— \4/7,0), withr,;=1.4 ring represents the plane projection of the orbit of electron 1, and

and v,=1.28442. Trajectories are shown for the first 900 time the outer ring represents the projection of the orbit of electron 2.

units, the inner ring represents the orbit of electron 1, and the outdrositions are measured in the scaled units defined in Sec. Ill.

ring represents the orbit of electron 2. Positions are measured in the .

scaled units defined in Sec. IIl. Initial conditions withx.=p.=0 and with a negative energy
describe double-elliptical orbitsand circular as a special

stable to asymmetric perturbations, with the exception of th&@s8- To describe a generic elliptical orbit we exploit the

Langmuir orbit for a small range df values around@z=2  SC@le invariance and set the energy-ta. It is then easy to

[25]. check that elliptical orbits of the Hamiltoniafl) with an

The simplest way to produce an asymmetric nonionizinge!"e(rjgy of—1 meSt have a total anglu!arhmomen_tumqu mag-
olane orbit is from the initial conditionk,—(r,,0,0), p,  "tude ranging from O to 2. To exploit the rotational invari-

= (001\477,0), %,=(—1.0,0,0), p,=(0,— V4/7,0), as sug- ance of Eq(1), we can choose theE plfme Eiefirjemgk Pc
gested in2,3]. In Fig. 1 we show the electronic trajectories =0 by the angular momentunt =XgX pg+XcX Pe=Xg

for the first 300 scaled time units along a two-dimensionalx p, to be thexy plane. On thiscy plane a single number
nonionizing orbit of C&*(Z=20) with r;=1.4 andvy  g<|x,xpy/<2 (the angular momentundetermines com-
=1.28442 in the above-defined condition. We used a Nupletely the elliptical orbit. The next step in producing a ge-
merical refining procedure to finely adjust so as to maxi-

mize the nonionizing time and this condition of Fig. 1 does, "¢ orbitis to add all possible perturbations alaggndp,

. et ) i i to the chosen elliptical orbit. These are six numbers, and
not ionize for 5 10" time units. The orbit survives that far once we are looking for bound oscillatory orbits, we can

only for a very sharp band of values®f, other neighboring choosez,=0, oncez. has to cross thay plane at some

values producing quick ionization. This orbit was named &,4int, so we need five independent numbers for each angular
double-ring torus irj2,3]. The other possible type of nonion- omentum of an elliptical orbit seed, which totals six pa-
izing orbit resulting from the above initial condition, depend- g meters. Our numerical search procedure consists in varying

ing on (r1,v4), is what was named a braiding torus in RefS. hese six parameters over a fine grid, integrating every single
[2,3], with both electrons orbiting within the same region. A jhitial condition until the distance from one electron to the

search overr(;,v,) was conducted ifi3], and it was found  nycleus is greater than 20 units, which is our ionization cri-
that most values ofr(,v;) produce quick ionization except terion. This criterion fails if the orbit has a very low angular
for a zero-measure set of (,v,) values where braiding tori  momentum because these can go far away from the nucleus
or double-ring orbits are found. This suggests the generadng come back, and therefore our search possibly misses
result that nonionizing orbits are rare in phase space.  |ow-angular-momentum nonionizing orbits. As the majority
To search for general tridimensional nonionizing orbits inof the initial conditions ionize very quickly, this search pro-
phase space, it is convenient to introduce canonical coordgedure is reasonably fast. We first perform a coarse search
natesxy andx.: for ionization times above 1000 units and then refine in the
neighborhood of each surviving condition to get conditions
R . R .. that do not ionize after X 1C° time units.
Pa=(P1—P2)/\2, Xg=(X1—X2)/\2, Using the above numerical search procedure we found the
(3)  tridimensional nonionizing initial condition of Fig. 2 for he-
oL oL lium, a tridimensional double-ring orbit generated by the ini-
Pe=(P1+P2)IN2, Xc=(X;+X2)/\/2. tial condition
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FIG. 3. Nonionizing tridimensional orbit for H(Z=1). Tra- o i )
jectories are shown for the first 10000 time units. The inner ring FIG- 4. Nonionizing double-ring orbit for ?ﬁg (2=40), ob-
represents the plane projection of the orbit of electron 1 and théained from the initial condition;=(r,0,0), p1= (001 V4/7,0),
outer ring represents the projection of the orbit of electron 2. TraXo=(—1.0,0,0), p,=(0,~ V4/7,0), withr,=1.4 andv,=1.3123.
jectory of the(fastest electron 1 winds almost everywhere in the Trajectories are shown for the first 2000 time units, the inner ring
the dark inner core of the figure. Positions are measured in théepresents the orbit of electron 1, and the outer ring represents the
scaled units of Sec. IIl. orbit of electron 2. Positions are measured in the scaled units de-
fined in Sec. Ill.

X;=(1.2812617,0.0147169,0.0 A last nonionizing condition we consider is an asymmet-
ric plane orbit for the casé€=40, which is generated from
X,=(—1.5511484,0.0147169,0,0 the initial condition X;=(r,0,0), p;=(0v1\4/7,0), X,
=(-1.0,0,0), p,=(0,—4/7,0), with r;=1.4 and v,
p;=(—0.0194868,0.4398889,0.1094930 =1.3123. In Fig. 4 we show the electronic trajectories for
the first 2000 scaled time units along this two-dimensional
p,=(—0.0194868;0.7972467,0.1094930 nonionizing orbit. AsZ becomes large, the electronic inter-
action becomes a small perturbation to the inverse-square
which does not ionize before ¥010° turns.(After the search  central force, and the orbit of Fig. 4 is approximately two
and refinement, we scaled this orbit's energy-tt, for later  ellipses with some precession due to the small electronic
convenience.We also found the nonionizing orbit orbit of interaction(the two ellipses are in the same plane
Fig. 3 for H (Z=1), a tridimensional orbit generated by = One remarkable fact about these nonionizing orbits is that
the condition they all have a very sharp Fourier transform. This property
makes them approximately quasiperiodic orbits. For ex-
X1=(1.9776507+0.3411364,0.0 ample, in Fig. 5 we plot the fast Fourier transform of the
orbit of Fig. 2, performed using* points. (It seems that
X,=(—1.2288121;0.3411364,0.0 there are at least two basic frequencies in the resonance
structure of Fig. 5. Even though these orbits look like qua-
p,=(0.0421302,0.5057782,0.2810539 siperiodic tori, there seems to be a thin stochastic tube sur-
rounding each orbit, as evidenced by a small positive maxi-
B,=(0.0421302:- 0.4132970,0.2810539 mum Lyapunov exponent. We calculatgd numgrically t_his
maximum Lyapunov exponent by doubling the integration

which does not ionize beforext10P turns.(The Coulombian ~ UMmes up toT=10" and found that the exponent initially
energy of this condition is alse 1.) This last orbit is fragile decreases but then saturates to a value of about 0.001 for the
and numerically harder to find: as the first electron has a@"™Pits of Figs. 1, 2, and 3. The gravitational three-body prob-
orbit very close to the positiv&=1 charge, there remains €M has recently been proved to display Arnold diffusibf

only a dipole field to bind the second electron. As the oute@nd this numerically calculated positive Lyapunov exponent
electron is much slower in the scaled units, we had to plofU99€sts that the same is true for the two-electron Coulom-
the first 10 000 time units of evolution to display the genericPian atom.

features of the trajectory. Nonionizing orbits of Hre very
rare in phase space, which is reminiscent of the quantum
counterpart, as the Hion is known to have only one quan-
tum bound state &= —0.55mc%a?, very close to the ion- The numerical integrations in this section are performed
ization threshold € 0.5mca?) [27]. with the vector field of the Darwin Hamiltonian approxima-

IV. NUMERICAL CALCULATIONS FOR THE DARWIN
DYNAMICS
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FIG. 5. Fast Fourier transform of the orbit of Fig. 2 usintf 2

points. Frequencies are measured in the scaled units of Sec. [ll. ~ FIG. 6. Minimum time to ionizatiorlamong 24 random pertur-
bations of average siz8? added to the orbit of Fig.)1 3 is the

tion of electrodynamic§6,10]. The Darwin equations of mo- adimensional parameter and time is measured in the scaled units of

tion are aB? perturbation of the Coulomb dynamics, of size Sec. lll.

B2~10* for atomic energies. In the scaled units of Sec. Il

the Darwin Hamiltonian is the followings? perturbation of ~larger values oZ. This dynamical stability mechanism was
Hamiltonian (1): first suggested by quantum atomic physics, where the values

of B vary with the nuclear charge #~2/137. Large values
~ 1oL 1 of Z facilitate the numerical procedure and in the following
HD=§(|I01| +p2l) +¢(2) r_12____ we present the numerical investigation of the stability of
nonionizing orbits starting from the largécase.

L2)p% . . N e Ao Let us start with theZ= 20 calcium ion two-electron sys-
- le[pl' P2+ (N12 P1)(N12 P2)] tem along the nonionizing orbit of Fig. 1 by fixing=1.4
andv,=1.284 42 in the condition defined in Sec. Ill. To test
the stability of the orbit at each value gfwe add a random
perturbation of average siz€? to the initial condition and
integrate the Darwin dynamics until either we find ionization
where ny,=(X;—X,)/r1». The second line represents the or the time of integration is greater than’iime units. We
Biot-Savart magnetic interaction plus the first relativistic cor-repeat this for at least 12 randomly chosen perturbatibes
rection to the static electric field and the last line describesause of the 12 degrees of freedoamd the minimum time
the relativistic mass correction. Notice that these are botlto ionization is plotted in Fig. 6 as a function gf It can be
proportional to the small parametgf, which makes them a seen that only for a narrow set of values aroyse 0.037
small scale-dependent perturbation on the scale-invariaas this minimum time to ionization greater than®1@or
Coulomb Hamiltoniar(first line). It is possible to regularize the other values it decreases rapidly to a value of abotit 10
the Darwin equations with the same double-Kustanheim@ne could argue that for the other valuesgothe nonioniz-
transformation23], only that here one needs to define theing initial condition has shifted away from the,

2
—%[|51|4+|52|4], (4)

regularized time using the higher poweds=r3r3ds, in-  =1.28442 initial condition, this being the reason that our
stead of the lower poweidt=rr,ds used to regularize the orbit ionized. To test this, we fixeg at a “bad” value, for
Coulomb equationg23]. example,3=0.02, and varied the plane initial condition in

The main question we address numerically in this sectiorthe 82 neighborhood of this condition of Fig. twe tried
is the dependence of the stability of a nonionizing orbit withsome 10 000 different valugsWe found that the minimum
the energy scale of the orbit. Here we use the word stabilitgime to ionization was always about®Even the maximum
to mean ionization stability: We call an initial condition ion- time before ionization was about 10We also searched in a
ization stable if any small perturbation of it produces anothebigger neighborhood, of size proportional@o but the mini-
nonionizing orbit. The scale-dependent Darwin tero§  mum time to ionization remained at %8s well as the maxi-
size 8%) produce significant deviations from the Coulomb mum at 16 for all tries. This suggests an interpretation that
dynamics only in a time scale of ordergf, which we find  for the special resonant value gf=0.037 the net diffusive
numerically to be the typical time for a nonionizing Coulom- effect of the scale-dependent term vanishes, allowing a non-
bian initial condition to ionize along the Darwin vector field. ionizing perturbed manifold. If the nonionizing initial condi-
This poses a numerical difficulty i is too small because tion had simply shifted away, at least one of the thousands of
one has to integrate the orbit for very long times to investi-tries would get close to it and the maximum time among alll
gate the stability. Numerical experiments taught us thatries would signal it. In order to have a direct readifig
ionization-stable orbits can be found at larger valueg ér  atomic unitg of the scale parametg, we scaled to-1 the
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adimensional scale parameter and time is measured in the scaledtions of average siz8 added to the orbit of Fig.)4 8 is the

units of Sec. Ill.

energy of the initial condition of Fig. 1 before the numerical
work (by use of the Coulombian scale invariancEhen, by
use of Eq.(2), the energy of the orbit in ergs is given By
=mc?B?H=—-mdc?B% and for 3=0.037 this is approxi-
mately —24.59 a.u. The total angular momentum of this or-
bit is 1,=7.944. This orbit’'s energy is above the ionization
continuum of the ionE = —mc®a?Z2/2=— 200 a.u., but it is
still in the quantum range. It serves nevertheless to demo

strate that this dynamical system might exhibit nonionizing

stable orbits only at very sharply defined energy values.

For the orbits of Figs. 2 and 3, the above procedure be

comes prohibitively slow, as the value gfare much smaller
and one must integrate for very long times, much beyond th
estimated shadowing time. To partially overcome this w
used a larger amplitude random perturbatiohaverage size
208?), to produce faster ionization. The drawback with this
is that the minimum ionization time does not show pro-
nounced peaks; only the average ionization time still shows
signature of scale dependence. In Fig. 7 we show this ave
age time for the orbit of Fig. 3. The peak value gf
=0.002 of Fig. 7 can be used with E®) to find the abso-

lute value of the scaled sharp Fourier frequency 1.75 of
Fig. 5, which for 3=0.002 is evaluated by Ed2) as 0.02
a.u. (infrared. The energy of the orbit for3=0.002 is
evaluated asE=-mc?B%=-0.15 a.u., again a shallow
level above the ionization threshold.

In Fig. 8 we show the minimum ionization tim@mong
24 random perturbations of siz#), of the nonionizing orbit

adimensional parameter and time is measured in the scaled units of
Sec. Ill.

Darwin approximation cannot describe the physics then. For
this above reason, we do not study the frozen-planet periodic
orbit (the two electrons performing one-dimensional periodic
motion on the same side of the nucleus, with the inner elec-
tron rebounding from the origin, an artifact of regulariza-
tion). The Darwin approximation would fail again, as the
inner particle goes to the speed of light. There would also be
some numerical-regularization difficulties involved if one
wanted to study this dynamical system anyway. The correct
relativistic “froze-planet” dynamics can actually produce a
new physicalinner turning point very close to the origin but
not at the origin as the regularized motion, and we discuss

eﬁwis elsewherd30]. Here we shall be contempt with these

interesting results for the shallow orbits already.

Last, we consider the nonionizing symmetric periodic or-
bit called the Langmuir orbit, where the two electrons per-
form symmetric bending motion shaped approximately like a
gemicircle[28]. For the Coulomb two-electron atom with
2 this orbit was found to have a zero maximum Lyapunov
exponen{25]. The orbit is therefore neutrally stable, which
is the best one can expect from a periodic orbit of a Hamil-
tonian vector field(Absolute stability violates the symplec-
tic symmetry, which says that to every stability exponknt
one should have a X/exponen. It is a simple matter to
obtain the Langmuir-like orbit for the Darwin Hamiltonian at
any given value ofg: all it takes is a little adjusting in the
neighborhood of the Coulombian Langmuir condition. We
attempted to investigate numerically any scale-dependent

of Fig. 4. Notice that we used a much larger perturbation, ogjiffusion away from this Darwin-Langmuir condition fg8

size proportional tg8 instead ofB2?, as the stability island
becomes larger for larget. The peak of the minimum ion-
ization time also becomes wider for this large valueZof

in the atomic range, but again the numerics is prohibitively
slow at the time of writing this work. It is known from mod-
ern perturbation theory that Arnold diffusion in the presence

This property of sharply defined energies can possibly bgf resonances can be much slower, and we refer the reader to
found for the lower-lying energies below the ionization the “stability by resonance result§31,32.

threshold as well. These orbits would involve configurations
where the electrons come very close to the nucleus and ac-
quire a large velocity. Even though our integrator is regular-
ized, the correct physical electronic repulsion is greatly am- The simplified dynamical mechanism behind resonant
plified when one electron has a relativistic velocity and thenonionization seems to go intuitively as follows: The pecu-

V. CONCLUSIONS AND DISCUSSION
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liar scale-invariant Coulomb dynamics determines the nonvariance has never been explored numerically, and most
ionizing orbits within narrow “stochastic tubes.” The next known Lorentz-invariant dynamical systems are for one par-
step is the action of the small scale-dependent relativistiticle and possess trivially integrable dynamics. The situation
corrections that produce a slow diffusion of the orbit out ofgets unexpectedly much more complicated for more than one
the thin tube in a time of the order ofA7. After this, quick  particle (apart from the trivial noninteracting many-particle
ionization follows. Only at very special resonant valuegof system: Due to the famous no-interaction theorgé2®], the
do the relativistic terms leave the orbit within the tube, arelativistic description of two directly interacting particles is
resonant effect that depends Bnfixing the energy scale. In  impossible within the Hamiltonian formalism and its set of
Ref. [3], it was shown that at least one nonionizing planeten canonical generators for the Poincgreup[20]. A de-
Coulombian orbit is found in the center of four resonancescription of interacting particles is possible only in the con-
islands in a “four-surface of section” of the four-degree-of- text of constraint dynamics, with 11 canonical generators and
freedom Hamiltoniar(Figs. 15, 16, and 17 of Ref3]). For  with covariantly defined Dirac brackets replacing the Poisson
the general higher-dimensional complex orbits we studiedbrackets. The interested reader should consult some recently
we could not find a fortunate way to project those islandsfound two-body direct-interaction relativistic Lagrangian dy-
but of course our ‘“stochastic tubes” should be stochastionamical systemg17] as well as the constraint-dynamics
resonance islands. In the literature, the escape to infinitgirect-interaction models recently used in chromodynamics
from simpler-to-understand two-degree-of-freedom systemand two-body Dirac equationd8—21. The nonlinear dy-
has been attributed to cantori, which, as is well known, camamics of these models could display the same type of inter-
trap chaotic orbits near regular regions for extremely longesting dynamical behavior.
times[5]. In the present larger dimensional case it appears It would be natural to wonder if one can find an analogous
that resonances are also controlling the escape to infinity afcale-dependent dynamics for a dynamical system describing
one electron by the existence of extra resonant constants tfie hydrogen atom, apparently the simplest example of
motion[6,7]. This seems to be in agreement with the numeri-Lorentz-invariant two-body relativistic dynamics of atomic
cal results of very sharp peaks for the minimum ionizationinterest. It turns out that hydrogen is not simpler than helium
time and also with the ‘“stability by resonance” results at all, but it appears to us that there is an essential difference
[31,32. We have tried to concentrate on the physics dewhich has actually made the interesting dynamics of a two-
scribed by this combination of chaotic dynamics on a two-electron atom amenable to study already within the Darwin
electron atom with inclusion of relativistic correction, while approximation: In a two-electron atom orbits with a negative
discussing this highly nontrivial result of nonlinear dynam- energy can ionize, while in hydrogen this might be possible
ics. only if one includes several correction orders of the relativ-
In Refs.[6,7] we noticed that a simple resonant normalistic action-at-a-distance interactiofior instance, this will
form criterion gives a surprisingly good prediction for the bring stochasticity to the simple planetary Coulombian hy-
discrete atomic energy levels of helium. The resonant strucdrogen) lonization with a negative energy would be impos-
ture was calculated using the Darwin interactidy whichis  sible for hydrogen within the Darwin approximatidanless
the low-velocity approximation to both Maxwell[$,7] and  the electron goes to the speed of lighkhis is an indication
Wheeler-Feynman’g8] electrodynamics. As we saw in Sec. that in hydrogen the essential physics described by the
11, the Coulombian nonionizing orbits are far from circular, action-at-a-distance electrodynamics is of nonperturbative
and these orbits would radiate even in dipole according teharacter. The paradoxical result of the infinite linear insta-
the time-irreversible Maxwell’s electrodynamigsrcular or-  bility of circular orbits in atomic hydrogef33] is another
bits radiate only in quadrupole but are linearly unstablie  warning of this nonperturbative dynamics.
becomes then clear that the heuristic result§6gf] have a
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