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Simple dynamical system with discrete bound states
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We study numerically the dynamical system of a two-electron atom with the Darwin interaction as a model
to investigate scale-dependent effects of the relativistic action-at-a-distance electrodynamics. This dynamical
system consists of a small perturbation of the Coulomb dynamics for energies in the atomic range. The key
properties of the Coulomb dynamics are~i! a peculiar mixed-type phase space with sparse families of stable
nonionizing orbits and~ii ! scale-invariance symmetry, with all orbits defined by an arbitrary scale parameter.
The combination of this peculiar chaotic dynamics@~i! and ~ii !#, with the scale-dependent relativistic correc-
tions~Darwin interaction!, generates the phenomenon of scale-dependent stability: We find numerical evidence
that stable nonionizing orbits can exist only for a discrete set of resonant energies. The Fourier transform of
these nonionizing orbits is a set of sharp frequencies. The energies and sharp frequencies of the nonionizing
orbits we study are in the quantum atomic range.

PACS number~s!: 05.45.Pq, 31.15.Ct, 45.05.1x
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I. INTRODUCTION

The Coulomb dynamical system of the helium atom is
very peculiar chaotic system that exhibits Arnold diffusi
@1#, and with a typical trajectory having an infinity of pos
sible time-asymptotic final states. For example, almost
negative-energy trajectories of Coulombian helium disp
the generic phenomenon of ionization, namely, the ejec
of one electron@2,3#. Several nonlinear dynamical system
share this property of having more than one time-asympt
final state, with the respective basins for each outcome h
ing a complicated structure in initial condition space@4,5#.
The numerical work in this paper is based on stable Coulo
bian orbits of a two-electron atom that do not ionize f
several millions of turns of one electron around the nucle
It is a property of the Coulomb dynamics of a two-electr
atom that most initial conditions with a negative energy io
ize very quickly in about 20 turns@2,3#. Then there are the
very special initial conditions that do not ionize due to
precise phase balance between the two electrons. These
nonionizing orbits are defined very sharply in phase sp
and were first studied in Refs.@2# and @3# for plane orbits.
Here we also develop a numerical procedure to search
nonionizing orbits among a large number of possible tri
mensional initial conditions.

The Coulomb Hamiltonian exhibits the scale-invarian
degeneracy: if we scale time and space ast→Tt, rW→LrW, the
equations of motion are left invariant ifT2/L351 ~this
simple scale relation is Kepler’s third law of gravitation!. For
this reason, the behavior of the Coulomb dynamics is
same in all scales, a degeneracy which is broken by the r
tivistic effects of electrodynamics. The phenomenon
breaking the scale invariance in electrodynamics was
plored analytically in@6,7# for the Darwin interaction, which
is the low-velocity approximation to the Wheeler-Feynm
action-at-a-distance electrodynamics@8#. It was found in
@6,7# that a simple resonant normal form approximati
theory predicts a discrete set of quantized scales very clos
PRE 621063-651X/2000/62~2!/2060~8!/$15.00
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the quantum atomic energies. Using these preliminary fi
ings as a guide, we present a numerical investigation of
stability of nonionizing orbits for the Darwin dynamics an
its dependence on the energy scale. It turns out that for
ergies of atomic interest, the Darwin equations of moti
approximate the Coulomb equations plus a perturbation
sizeb2, with b;1022. Therefore, nonionizing stable orbit
of the Darwin dynamics should exist in the neighborhood
nonionizing stable Coulombian orbits if the perturbati
does not force ionization. For these, our numerical res
with Darwin dynamics indicate that the nonionizing prope
plus stability requires sharply defined discrete energies.

This paper is organized as follows: In Sec. II we discu
how the Darwin Hamiltonian can be an approximation to
time-reversible direct-interaction relativistic physical theo
In Sec. III we describe the numerical calculations with t
Coulomb limit of the Darwin interaction, and find some no
ionizing orbits and their Fourier transforms. In Sec. IV w
include the scale-dependent Darwin terms and investigate
possibility of stable nonionizing orbits. In Sec. V we give th
conclusions and discussion.

II. DIRECT-INTERACTION ELECTRODYNAMICS

The Darwin interaction is not exactly a Lorentz invaria
interaction@9–11#, so we study it as an approximation to th
relativistic action-at-a-distance electrodynamics, for the s
of including the present approach into an underlying phys
theory. Maxwell’s theory would seem to be the natural ca
didate for the comprehensive physical theory, but it lac
time reversibility and dipolar dissipation would forbid th
orbits studied in this paper. In the face of this, an alternat
physical theory would be a direct-interaction theory. Th
theory could be the Wheeler-Feynman action-at-a-dista
electrodynamics, for example@12#, and in fact the Darwin
interaction is the low-velocity approximation to the Wheele
Feynman electrodynamics@8#.
2060 ©2000 The American Physical Society
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PRE 62 2061SIMPLE DYNAMICAL SYSTEM WITH DISCRETE BOUND . . .
Wheeler and Feynman showed that electromagnetic p
nomena can be described by the action-at-a-distance ele
dynamics in complete agreement with Maxwell’s electrod
namics as far as the classical experimental conseque
@12,13#. This direct-interaction formulation of electrodynam
ics was developed to avoid the complications of a diverg
self-interaction, as there is no self-interaction in the theo
and also to eliminate the infinite number of field degrees
freedom of Maxwell’s theory@14# ~and there is no loose
radiation in the theory either!. It was a great inspiration o
Wheeler and Feynman in 1945@12# that showed, with the
extra hypothesis that the electron interacts with a comple
absorbing universe, that the advanced response of this
verse to the electron’s retarded field arrivesat the present
time of the electronand is equivalent to the local instant
neous self-interaction of the Lorentz-Dirac theory@15#. The
action-at-a-distance electrodynamics is symmetric un
time reversal, and dissipation is only due to interaction w
the other charges of the universe and becomes a matt
statistical mechanics of absorption@16# ~the Lorentz-Dirac
dissipation being just a special limiting way of interactio
with the other charges of the universe@12#!. In this paper we
are only interested in the nondissipative isolated two-elec
system.

In the following we resort to the Darwin approximatio
not as much as a mathematical approximation to the act
at-a-distance electrodynamics, but as a physical approx
tion of Lorentz-invariant direct-interaction dynamics in th
atomic shallow-energy range. There are today sev
choices of direct-interaction Lorentz-invariant systems,
ther Lagrangian@17# or constrained Hamiltonian dynamica
systems@18–21#, whose exact forms are actually more am
nable to numerical treatment than the Wheeler-Feynm
electrodynamics, but we shall not discuss them here.

III. NUMERICAL CALCULATIONS FOR THE COULOMB
DYNAMICS

To introduce our numerical calculations, we start from t
scale-invariant Coulomb limit of the Darwin interaction: L
2e and m be the electronic charge and mass, respectiv
and Ze the nuclear charge of our two-electron atom. T
nucleus is assumed infinitely massive and resting at the
gin. Our numerical work uses a scaling that exploits the sc
invariance of the Coulomb dynamics: Given a negative
ergy, there is a unique circular orbit at that energy with f
quencyvo and radiusR related bye2/(mvo

2R3)51/(Z2 1
4 )

[z(Z). We scale distance, momentum, time, and energy
x→Rx, p→mvoRp, vodt→dt, andE→mvo

2R2Ĥ, respec-
tively. In these scaled units, the Coulomb dynamics of
two-electron atom is described by the scaled Hamiltonia

Ĥ5
1

2
~ upW 1u21upW 2u2!1z~Z!H 1

r 12
2

Z

r 1
2

Z

r 2
J , ~1!

where r 1[uxW1u, r 2[uxW2u, r 12[uxW12xW2u ~single bars repre-
sent Euclidean modulus!, andb[voR/c. For a generic non-
circular orbit,b plays the role of a scale parameter, and
recover the value of the energy in ergs throughE

5mc2b2Ĥ. Notice that b does not appear in the scale
Hamiltonian, which is the scale-invariance property. Fro
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the scaled frequencyŵ and scaled angular momentuml̂ we
can recover the actual values in cgs units by the formula

w5
mc2z~Z!b3

e2/c
ŵ, l 5

e2/c

z~Z!

l̂

b
. ~2!

The only other analytic constant of the Coulomb dynami
besides the energy~1!, is the total angular momentum, an
this dynamics is chaotic and displays Arnold diffusion,
proved in@1# for a similar three-body system.

Our numerical calculations were performed using a nin
order Runge-Kutta embedded integrator pair@22#. We chose
the embedded error per step to be 10214, and after 103106

time units of integration the changes in energy and total
gular momentum were less than 1 part in 106. As a numeri-
cal precaution we performed the numerical calculations
ing the double Kustanheimo coordinate transformation
regularize single collisions with the nucleus@23#. As these
alone are not enough for faithful integration, we checked t
there was never a triple collision, as the minimum interel
tronic distance was about 0.3 units while the minimum d
tance to the nucleus was 0.01 units for all the orbits cons
ered in this work. We also checked that along sta
nonionizing orbits we can integrate forward up to 50 0
time units, reverse the integration, go backwards ano
50 000 units, and recover the initial condition with a perce
tile error of 1025. ~Notice that the embedded integrator w
not repeat the same exact forward steps in the backw
integration.! For longer times this precision of back and for
integration degenerates rapidly, which is due to the co
bined effect of numerical truncation and stochasticity. T
question of how far in time the numerical trajectories a
proximate shadowing trajectories in the present system is
from trivial @24#, but we assume it to be a time at least of t
order of these 100 000 units.~Energy conservation of 1 par
in 106 is achieved for much longer times, even 13108 time
units.!

The study of orbits of a two-electron atom was grea
stimulated by the recent interest in semiclassical quant
tion, and these studies discovered two types of stable z
angular-momentum periodic orbits for helium (Z52): the
Langmuir orbit and the frozen-planet orbit@25,26#. A de-
tailed study of the nonionizing orbits of Coulombian heliu
was initiated in Refs.@2# and @3# for plane orbits, and we
describe some of their results below. There are basically
types of nonionizing orbits: symmetric ifr 15r 2 for all times
and asymmetric ifr 1Þr 2 generically. Symmetric orbits are
produced by symmetric initial conditions like, for exampl
xW1(0)52xW2(0) and pW 1(0)52pW 2(0) or xW1(0)52xW2(0)
and pW 1(0)5pW 2(0) with xW1(0)•pW 1(0)50 @25#. Because Eq.
~1! is symmetric under particle exchange, these orbits sat
r 15r 2 at all times, and therefore cannot ionize ifH,0 ~both
electrons would have to ionize at the same time, which
impossible at negative energies!. For example the double
elliptical orbits ~two equal ellipses symmetrically displace
along thex axis! discussed in@7# are in this class. Double
elliptical orbits are known to be unstable@6,7# and we find
that they ionize in about 100 turns because of the numer
truncation error. Most symmetric plane orbits are very u
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2062 PRE 62JAYME De LUCA
stable to asymmetric perturbations, with the exception of
Langmuir orbit for a small range ofZ values aroundZ52
@25#.

The simplest way to produce an asymmetric nonioniz
plane orbit is from the initial conditionxW15(r 1,0,0), pW 1

5(0,v1A4/7,0), xW25(21.0,0,0),pW 25(0,2A4/7,0), as sug-
gested in@2,3#. In Fig. 1 we show the electronic trajectorie
for the first 300 scaled time units along a two-dimensio
nonionizing orbit of Ca181(Z520) with r 151.4 and v1
51.284 42 in the above-defined condition. We used a
merical refining procedure to finely adjustv1 so as to maxi-
mize the nonionizing time and this condition of Fig. 1 do
not ionize for 53104 time units. The orbit survives that fa
only for a very sharp band of values ofv1, other neighboring
values producing quick ionization. This orbit was named
double-ring torus in@2,3#. The other possible type of nonion
izing orbit resulting from the above initial condition, depen
ing on (r 1 ,v1), is what was named a braiding torus in Re
@2,3#, with both electrons orbiting within the same region.
search over (r 1 ,v1) was conducted in@3#, and it was found
that most values of (r 1 ,v1) produce quick ionization excep
for a zero-measure set of (r 1 ,v1) values where braiding tor
or double-ring orbits are found. This suggests the gen
result that nonionizing orbits are rare in phase space.

To search for general tridimensional nonionizing orbits
phase space, it is convenient to introduce canonical coo
natesxWd andxW c :

pW d[~pW 12pW 2!/A2, xWd[~xW12xW2!/A2,
~3!

pW c[~pW 11pW 2!/A2, xW c[~xW11xW2!/A2.

FIG. 1. Nonionizing double-ring orbit for a Ca118 ion (Z
520), obtained from the initial conditionxW15(r 1,0,0), pW 1

5(0,v1A4/7,0), xW25(21.0,0,0), pW 25(0,2A4/7,0), with r 151.4
and v151.28442. Trajectories are shown for the first 900 tim
units, the inner ring represents the orbit of electron 1, and the o
ring represents the orbit of electron 2. Positions are measured in
scaled units defined in Sec. III.
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Initial conditions withxW c5pW c50 and with a negative energ
describe double-elliptical orbits~and circular as a specia
case!. To describe a generic elliptical orbit we exploit th
scale invariance and set the energy to21. It is then easy to
check that elliptical orbits of the Hamiltonian~1! with an
energy of21 must have a total angular momentum of ma
nitude ranging from 0 to 2. To exploit the rotational invar
ance of Eq.~1!, we can choose the plane defined atxW c5 pW c

50 by the angular momentumLW 5xWd3pW d1xW c3pW c5xWd

3pW d to be thexy plane. On thisxy plane a single numbe
0,uxWd3pW du,2 ~the angular momentum! determines com-
pletely the elliptical orbit. The next step in producing a g
neric orbit is to add all possible perturbations alongxW c andpW c
to the chosen elliptical orbit. These are six numbers, a
once we are looking for bound oscillatory orbits, we c
choosezc50, oncezc has to cross thexy plane at some
point, so we need five independent numbers for each ang
momentum of an elliptical orbit seed, which totals six p
rameters. Our numerical search procedure consists in var
these six parameters over a fine grid, integrating every sin
initial condition until the distance from one electron to th
nucleus is greater than 20 units, which is our ionization c
terion. This criterion fails if the orbit has a very low angul
momentum because these can go far away from the nuc
and come back, and therefore our search possibly mi
low-angular-momentum nonionizing orbits. As the major
of the initial conditions ionize very quickly, this search pr
cedure is reasonably fast. We first perform a coarse se
for ionization times above 1000 units and then refine in
neighborhood of each surviving condition to get conditio
that do not ionize after 13106 time units.

Using the above numerical search procedure we found
tridimensional nonionizing initial condition of Fig. 2 for he
lium, a tridimensional double-ring orbit generated by the i
tial condition

er
he

FIG. 2. Nonionizing double-ring tridimensional orbit for helium
(Z52). Trajectories are shown for the first 200 time units, the in
ring represents the plane projection of the orbit of electron 1,
the outer ring represents the projection of the orbit of electron
Positions are measured in the scaled units defined in Sec. III.
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PRE 62 2063SIMPLE DYNAMICAL SYSTEM WITH DISCRETE BOUND . . .
xW15~1.2812617,0.0147169,0.0!,

xW25~21.5511484,0.0147169,0.0!,

pW 15~20.0194868,0.4398889,0.1094930!,

pW 25~20.0194868,20.7972467,0.1094930!,

which does not ionize before 103106 turns.~After the search
and refinement, we scaled this orbit’s energy to21, for later
convenience.! We also found the nonionizing orbit orbit o
Fig. 3 for H2 (Z51), a tridimensional orbit generated b
the condition

xW15~1.9776507,20.3411364,0.0!,

xW25~21.2288121,20.3411364,0.0!,

pW 15~0.0421302,0.5057782,0.2810539!,

pW 25~0.0421302,20.4132970,0.2810539!,

which does not ionize before 13106 turns.~The Coulombian
energy of this condition is also21.) This last orbit is fragile
and numerically harder to find: as the first electron has
orbit very close to the positiveZ51 charge, there remain
only a dipole field to bind the second electron. As the ou
electron is much slower in the scaled units, we had to p
the first 10 000 time units of evolution to display the gene
features of the trajectory. Nonionizing orbits of H2 are very
rare in phase space, which is reminiscent of the quan
counterpart, as the H2 ion is known to have only one quan
tum bound state atE.20.55mc2a2, very close to the ion-
ization threshold (20.5mc2a2) @27#.

FIG. 3. Nonionizing tridimensional orbit for H2 (Z51). Tra-
jectories are shown for the first 10 000 time units. The inner r
represents the plane projection of the orbit of electron 1 and
outer ring represents the projection of the orbit of electron 2. T
jectory of the~fastest! electron 1 winds almost everywhere in th
the dark inner core of the figure. Positions are measured in
scaled units of Sec. III.
n
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A last nonionizing condition we consider is an asymm
ric plane orbit for the caseZ540, which is generated from
the initial condition xW15(r 1,0,0), pW 15(0,v1A4/7,0), xW2

5(21.0,0,0), pW 25(0,2A4/7,0), with r 151.4 and v1
51.3123. In Fig. 4 we show the electronic trajectories
the first 2000 scaled time units along this two-dimensio
nonionizing orbit. AsZ becomes large, the electronic inte
action becomes a small perturbation to the inverse-squ
central force, and the orbit of Fig. 4 is approximately tw
ellipses with some precession due to the small electro
interaction~the two ellipses are in the same plane!.

One remarkable fact about these nonionizing orbits is t
they all have a very sharp Fourier transform. This prope
makes them approximately quasiperiodic orbits. For
ample, in Fig. 5 we plot the fast Fourier transform of t
orbit of Fig. 2, performed using 216 points. ~It seems that
there are at least two basic frequencies in the resona
structure of Fig. 5.! Even though these orbits look like qua
siperiodic tori, there seems to be a thin stochastic tube
rounding each orbit, as evidenced by a small positive ma
mum Lyapunov exponent. We calculated numerically t
maximum Lyapunov exponent by doubling the integrati
times up toT5107 and found that the exponent initiall
decreases but then saturates to a value of about 0.001 fo
orbits of Figs. 1, 2, and 3. The gravitational three-body pro
lem has recently been proved to display Arnold diffusion@1#,
and this numerically calculated positive Lyapunov expon
suggests that the same is true for the two-electron Coul
bian atom.

IV. NUMERICAL CALCULATIONS FOR THE DARWIN
DYNAMICS

The numerical integrations in this section are perform
with the vector field of the Darwin Hamiltonian approxima

g
e
-

e

FIG. 4. Nonionizing double-ring orbit for Zr138 (Z540), ob-
tained from the initial conditionxW15(r 1,0,0), pW 15(0,v1A4/7,0),
xW25(21.0,0,0), pW 25(0,2A4/7,0), with r 151.4 andv151.3123.
Trajectories are shown for the first 2000 time units, the inner r
represents the orbit of electron 1, and the outer ring represents
orbit of electron 2. Positions are measured in the scaled units
fined in Sec. III.
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2064 PRE 62JAYME De LUCA
tion of electrodynamics@6,10#. The Darwin equations of mo
tion are ab2 perturbation of the Coulomb dynamics, of siz
b2;1024 for atomic energies. In the scaled units of Sec
the Darwin Hamiltonian is the followingb2 perturbation of
Hamiltonian~1!:

ĤD5
1

2
~ upW 1u21upW 2u2!1z~Z!H 1

r 12
2

Z

r 1
2

Z

r 2
J

2
z~Z!b2

2r 12
@pW 1•pW 21~ n̂12•pW 1!~ n̂12•pW 2!#

2
b2

8
@ upW 1u41upW 2u4#, ~4!

where n̂12[(xW12xW2)/r 12. The second line represents th
Biot-Savart magnetic interaction plus the first relativistic c
rection to the static electric field and the last line descri
the relativistic mass correction. Notice that these are b
proportional to the small parameterb2, which makes them a
small scale-dependent perturbation on the scale-invar
Coulomb Hamiltonian~first line!. It is possible to regularize
the Darwin equations with the same double-Kustanhe
transformation@23#, only that here one needs to define t
regularized time using the higher powersdt5r 1

2r 2
2ds, in-

stead of the lower powersdt5r 1r 2ds used to regularize the
Coulomb equations@23#.

The main question we address numerically in this sec
is the dependence of the stability of a nonionizing orbit w
the energy scale of the orbit. Here we use the word stab
to mean ionization stability: We call an initial condition ion
ization stable if any small perturbation of it produces anot
nonionizing orbit. The scale-dependent Darwin terms~of
size b2) produce significant deviations from the Coulom
dynamics only in a time scale of order 1/b2, which we find
numerically to be the typical time for a nonionizing Coulom
bian initial condition to ionize along the Darwin vector fiel
This poses a numerical difficulty ifb is too small because
one has to integrate the orbit for very long times to inve
gate the stability. Numerical experiments taught us t
ionization-stable orbits can be found at larger values ofb for

FIG. 5. Fast Fourier transform of the orbit of Fig. 2 using 216

points. Frequencies are measured in the scaled units of Sec. I
I
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larger values ofZ. This dynamical stability mechanism wa
first suggested by quantum atomic physics, where the va
of b vary with the nuclear charge asb;Z/137. Large values
of Z facilitate the numerical procedure and in the followin
we present the numerical investigation of the stability
nonionizing orbits starting from the largeZ case.

Let us start with theZ520 calcium ion two-electron sys
tem along the nonionizing orbit of Fig. 1 by fixingr 151.4
andv151.284 42 in the condition defined in Sec. III. To te
the stability of the orbit at each value ofb we add a random
perturbation of average sizeb2 to the initial condition and
integrate the Darwin dynamics until either we find ionizati
or the time of integration is greater than 107 time units. We
repeat this for at least 12 randomly chosen perturbations~be-
cause of the 12 degrees of freedom! and the minimum time
to ionization is plotted in Fig. 6 as a function ofb. It can be
seen that only for a narrow set of values aroundb;0.037
was this minimum time to ionization greater than 106. For
the other values it decreases rapidly to a value of about 13.
One could argue that for the other values ofb the nonioniz-
ing initial condition has shifted away from thev1
51.284 42 initial condition, this being the reason that o
orbit ionized. To test this, we fixedb at a ‘‘bad’’ value, for
example,b50.02, and varied the plane initial condition i
the b2 neighborhood of this condition of Fig. 1~we tried
some 10 000 different values!. We found that the minimum
time to ionization was always about 103. Even the maximum
time before ionization was about 104. We also searched in a
bigger neighborhood, of size proportional tob, but the mini-
mum time to ionization remained at 103 as well as the maxi-
mum at 104 for all tries. This suggests an interpretation th
for the special resonant value ofb50.037 the net diffusive
effect of the scale-dependent term vanishes, allowing a n
ionizing perturbed manifold. If the nonionizing initial cond
tion had simply shifted away, at least one of the thousand
tries would get close to it and the maximum time among
tries would signal it. In order to have a direct reading~in
atomic units! of the scale parameterb, we scaled to21 the

FIG. 6. Minimum time to ionization~among 24 random pertur
bations of average sizeb2 added to the orbit of Fig. 1!. b is the
adimensional parameter and time is measured in the scaled un
Sec. III.
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PRE 62 2065SIMPLE DYNAMICAL SYSTEM WITH DISCRETE BOUND . . .
energy of the initial condition of Fig. 1 before the numeric
work ~by use of the Coulombian scale invariance!. Then, by
use of Eq.~2!, the energy of the orbit in ergs is given byE

5mc2b2Ĥ52mc2b2, and for b50.037 this is approxi-
mately224.59 a.u. The total angular momentum of this o
bit is l z57.94\. This orbit’s energy is above the ionizatio
continuum of the ion,E52mc2a2Z2/252200 a.u., but it is
still in the quantum range. It serves nevertheless to dem
strate that this dynamical system might exhibit nonioniz
stable orbits only at very sharply defined energy values.

For the orbits of Figs. 2 and 3, the above procedure
comes prohibitively slow, as the value ofb are much smaller
and one must integrate for very long times, much beyond
estimated shadowing time. To partially overcome this
used a larger amplitude random perturbation~of average size
20b2), to produce faster ionization. The drawback with th
is that the minimum ionization time does not show pr
nounced peaks; only the average ionization time still show
signature of scale dependence. In Fig. 7 we show this a
age time for the orbit of Fig. 3. The peak value ofb
50.002 of Fig. 7 can be used with Eq.~2! to find the abso-
lute value of the scaled sharp Fourier frequencyv̂.1.75 of
Fig. 5, which forb50.002 is evaluated by Eq.~2! as 0.02
a.u. ~infrared!. The energy of the orbit forb50.002 is
evaluated asE52mc2b2520.15 a.u., again a shallow
level above the ionization threshold.

In Fig. 8 we show the minimum ionization time~among
24 random perturbations of sizeb), of the nonionizing orbit
of Fig. 4. Notice that we used a much larger perturbation
size proportional tob instead ofb2, as the stability island
becomes larger for largerZ. The peak of the minimum ion
ization time also becomes wider for this large value ofZ.

This property of sharply defined energies can possibly
found for the lower-lying energies below the ionizatio
threshold as well. These orbits would involve configuratio
where the electrons come very close to the nucleus and
quire a large velocity. Even though our integrator is regul
ized, the correct physical electronic repulsion is greatly a
plified when one electron has a relativistic velocity and

FIG. 7. Average time to ionization~among 12 random perturba
tions of average size 20b2 added to the orbit of Fig. 3!. b is the
adimensional scale parameter and time is measured in the s
units of Sec. III.
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Darwin approximation cannot describe the physics then.
this above reason, we do not study the frozen-planet perio
orbit ~the two electrons performing one-dimensional perio
motion on the same side of the nucleus, with the inner e
tron rebounding from the origin, an artifact of regulariz
tion!. The Darwin approximation would fail again, as th
inner particle goes to the speed of light. There would also
some numerical-regularization difficulties involved if on
wanted to study this dynamical system anyway. The corr
relativistic ‘‘froze-planet’’ dynamics can actually produce
new physicalinner turning point very close to the origin bu
not at the origin as the regularized motion, and we discu
this elsewhere@30#. Here we shall be contempt with thes
interesting results for the shallow orbits already.

Last, we consider the nonionizing symmetric periodic o
bit called the Langmuir orbit, where the two electrons p
form symmetric bending motion shaped approximately lik
semicircle@28#. For the Coulomb two-electron atom withZ
52 this orbit was found to have a zero maximum Lyapun
exponent@25#. The orbit is therefore neutrally stable, whic
is the best one can expect from a periodic orbit of a Ham
tonian vector field.~Absolute stability violates the symplec
tic symmetry, which says that to every stability exponentl
one should have a 1/l exponent.! It is a simple matter to
obtain the Langmuir-like orbit for the Darwin Hamiltonian a
any given value ofb: all it takes is a little adjusting in the
neighborhood of the Coulombian Langmuir condition. W
attempted to investigate numerically any scale-depend
diffusion away from this Darwin-Langmuir condition forb
in the atomic range, but again the numerics is prohibitiv
slow at the time of writing this work. It is known from mod
ern perturbation theory that Arnold diffusion in the presen
of resonances can be much slower, and we refer the read
the ‘‘stability by resonance results’’@31,32#.

V. CONCLUSIONS AND DISCUSSION

The simplified dynamical mechanism behind reson
nonionization seems to go intuitively as follows: The pec

led
FIG. 8. Minimum time to ionization~among 24 random pertur

bations of average sizeb added to the orbit of Fig. 4!. b is the
adimensional parameter and time is measured in the scaled un
Sec. III.
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liar scale-invariant Coulomb dynamics determines the n
ionizing orbits within narrow ‘‘stochastic tubes.’’ The nex
step is the action of the small scale-dependent relativi
corrections that produce a slow diffusion of the orbit out
the thin tube in a time of the order of 1/b2. After this, quick
ionization follows. Only at very special resonant values ob
do the relativistic terms leave the orbit within the tube,
resonant effect that depends onb, fixing the energy scale. In
Ref. @3#, it was shown that at least one nonionizing pla
Coulombian orbit is found in the center of four resonan
islands in a ‘‘four-surface of section’’ of the four-degree-o
freedom Hamiltonian~Figs. 15, 16, and 17 of Ref.@3#!. For
the general higher-dimensional complex orbits we stud
we could not find a fortunate way to project those islan
but of course our ‘‘stochastic tubes’’ should be stochas
resonance islands. In the literature, the escape to infi
from simpler-to-understand two-degree-of-freedom syste
has been attributed to cantori, which, as is well known, c
trap chaotic orbits near regular regions for extremely lo
times @5#. In the present larger dimensional case it appe
that resonances are also controlling the escape to infinit
one electron by the existence of extra resonant constan
motion@6,7#. This seems to be in agreement with the nume
cal results of very sharp peaks for the minimum ionizat
time and also with the ‘‘stability by resonance’’ resul
@31,32#. We have tried to concentrate on the physics
scribed by this combination of chaotic dynamics on a tw
electron atom with inclusion of relativistic correction, whi
discussing this highly nontrivial result of nonlinear dynam
ics.

In Refs. @6,7# we noticed that a simple resonant norm
form criterion gives a surprisingly good prediction for th
discrete atomic energy levels of helium. The resonant st
ture was calculated using the Darwin interaction~4!, which is
the low-velocity approximation to both Maxwell’s@6,7# and
Wheeler-Feynman’s@8# electrodynamics. As we saw in Se
III, the Coulombian nonionizing orbits are far from circula
and these orbits would radiate even in dipole according
the time-irreversible Maxwell’s electrodynamics~circular or-
bits radiate only in quadrupole but are linearly unstable!. It
becomes then clear that the heuristic results of@6,7# have a
simpler physical meaning in the context of a time-reversi
direct-interaction theory~as the action-at-a-distance electr
dynamics for example!.

The combination of chaotic dynamics with relativistic i
s
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variance has never been explored numerically, and m
known Lorentz-invariant dynamical systems are for one p
ticle and possess trivially integrable dynamics. The situat
gets unexpectedly much more complicated for more than
particle ~apart from the trivial noninteracting many-partic
system!: Due to the famous no-interaction theorem@29#, the
relativistic description of two directly interacting particles
impossible within the Hamiltonian formalism and its set
ten canonical generators for the Poincare´ group @20#. A de-
scription of interacting particles is possible only in the co
text of constraint dynamics, with 11 canonical generators
with covariantly defined Dirac brackets replacing the Poiss
brackets. The interested reader should consult some rec
found two-body direct-interaction relativistic Lagrangian d
namical systems@17# as well as the constraint-dynamic
direct-interaction models recently used in chromodynam
and two-body Dirac equations@18–21#. The nonlinear dy-
namics of these models could display the same type of in
esting dynamical behavior.

It would be natural to wonder if one can find an analogo
scale-dependent dynamics for a dynamical system descri
the hydrogen atom, apparently the simplest example
Lorentz-invariant two-body relativistic dynamics of atom
interest. It turns out that hydrogen is not simpler than heli
at all, but it appears to us that there is an essential differe
which has actually made the interesting dynamics of a tw
electron atom amenable to study already within the Darw
approximation: In a two-electron atom orbits with a negat
energy can ionize, while in hydrogen this might be possi
only if one includes several correction orders of the relat
istic action-at-a-distance interaction.~For instance, this will
bring stochasticity to the simple planetary Coulombian h
drogen.! Ionization with a negative energy would be impo
sible for hydrogen within the Darwin approximation~unless
the electron goes to the speed of light!. This is an indication
that in hydrogen the essential physics described by
action-at-a-distance electrodynamics is of nonperturba
character. The paradoxical result of the infinite linear ins
bility of circular orbits in atomic hydrogen@33# is another
warning of this nonperturbative dynamics.
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